

16 C. IRISH WATER / STATUTORY BODIES

(Page left intentionally blank)

CONFIRMATION OF FEASIBILITY

Portal Asset Holding Ltd.

C/o David Murphy MHL & Associates 10 High Street Douglas Road Cork T12KC66 **Uisce Éireann** Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

10 April 2024

Our Ref: CDS24003093 Pre-Connection Enquiry Coollegran, Port Road, Killarney, Co. Kerry – 224 units & crèche

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Multi/Mixed Use Development of 373 unit(s) at Coollegran, Port Road, Killarney, Kerry, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection
- Feasible without infrastructure upgrade by Irish Water
- This Connection Offer to connect to the Irish Water infrastructure does not extend to your fire flow requirements. In order to determine the potential flow that could be delivered during normal operational conditions, an on site assessment of the existing network is required. Please note that Irish Water cannot guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.
- -

Wastewater Connection

- Feasible without infrastructure upgrade by Irish Water
- In order to accommodate the proposed connection at the Premises, upgrade works are required to increase the capacity of the Irish Water

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

wastewater network. It is necessary to upsize approximately 1.2km of 450mm diameter combined sewer. Alternatively, storm water separation from the existing 450mm diameter combined sewer for an area of 0.2ha is necessary to accommodate the proposed connection at the premises.

Should you wish to have such upgrade works progressed, Irish Water will require you to provide a contribution of a relevant portion of the costs for the required upgrades, please contact Irish Water to discuss this further.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Section A - What is important to know?

What is important to know?	Why is this important?						
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s). 						
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann. 						
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted. 						
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>						
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*. 						
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works						
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.						
	What to do? - Contact the relevant Local Fire Authority						
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.						
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges. 						
Where do I find details of Uisce Éireann's network(s)?	 Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u> 						

What are the design requirements for the connection(s)?	 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link: https://www.water.ie/business/trade-effluent/about/
	**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

David Murphy 10 High Street Douglas Road Cork T12KC66

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

14 May 2024

Uisce Éireann PO Box 448 South City Delivery Office

Re: Design Submission for Coollegran, Port Road, Killarney, Kerry (the "Development") (the "Design Submission") / Connection Reference No: CDS24003093

Dear David Murphy,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Uisce Éireann has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before you can connect to our network you must sign a connection agreement with Uisce Éireann. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Uisce Éireann's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Uisce Éireann's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Uisce Éireann does not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Uisce Éireann representative: Name: Kyle Jackson Email: kyle.jackson@water.ie

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

Appendix A

Document Title & Revision

- [PR-MHL-WM-P01]
- [PR-MHL-WM-P02]
- [PR-MHL-WM-P03]
- [PR-MHL-WM-P04]
- [PR-MHL-WM-P05]
- [PR-MHL-WM-P06]
- [PR-MHL-SLM-P01]
- [PR-MHL-PWS-P01]
- [PR-MHL-PWS-P02]
- [PR-MHL-PWS-P03]
- [PR-MHL-PWS-P04]
- [PR-MHL-PWS-P05]
- [PR-MHL-PWS-P06]
- [PR-MHL-PWS-P07]
- [PR-MHL-PWS-P08]
- [PR-MHL-PS-P01]
- [PR-MHL-PS-P02]

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Uisce Éireann will not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

	NOTES							
	All dimensions in me	etres.						
	Do not scale from dr For any discrepancie	awing. es found please consi	ult with design office.					
	This drawing is for P Not for Construction	LANNING purposed	only.					
	Legend: Note: Drawing To Bo Pr	ad in Conjunction With Irig	sh Water: Water					
X	Infrastructure Standard I	Details Document Number	: IW-CDS-5030-01 &					
8 1 1	IW-CDS-5030-03	fuce for wastewater infras						
	Standard separation di	stances refer to STD-WW	-05 & STD-WW-06					
AL 4	Foul Manhole (STD-WW-09R1, STD-	WW-10R1,						
	Foul Inspection Chamb	Foul Inspection Chamber						
15	(STD-WW-13R1)	Of mm dia	BOX					
	Foul Sewer Line 150/22 (STD-WW-04, STD-WW STD-WW-07& STD-WM	25mm dia. N-05, STD-WW-06R1, N-08)						
	Foul house connection	100mm dia.						
714 /	(STD-WW-01, STD-WW Proposed 100mm Poly	w-03 & STD-WW-04) ethylene Foul Rising Mair						
	Site Boundary	with the second						
	Proposed Storm Sewer	r Line						
	Proposed Storm MH							
	Proposed Storm Tank							
5								
Potential								
Pedestrian Connection								
34,938								
5	Rev By Date	Description						
Height = 11205 = 57.8($\frac{1}{100}$ (loo Thee)								
= 34.8.49 = 11.160 = 29.67	H DM 05/24 Drawing Status:	IW Revision						
	Designed	PLANNING						
	Project Title: Residential De	evelopment at Inch	n / Coollegrean,					
	Port Road, Kil	llarney						
	Proposed Sev	wer Lines						
717	Sheet 2 of 2							
	Unent.		2.24					
	Por	tal Asset Holdings	Ltd.					
		M.H.L & As Consulting	Sociates Ltd. Engineers					
\geq	MHL	Unit 1b, The Atrium, Blackpool	Tel: 021-4840214 Fax: 021-4840215 E-Mail:info@mbl.ic					
		Cork						
	Designed: DM	Drawn: DM	Checked: BM					
	Scale: 1:500 @A1 1:1000 @A3	Date:	MAY 2024					
	Job No:	Drawing No:	Revision:					
	1013/HD	FR-INIAL-PS-P01	_n					

	NOTES		
	All dimensions in res	tres	
	Do not scale from dra	awing.	
	This drawing is for P	LANNING purposed	only.
STI /	Legend:		
	Note: Drawing To Be Rea	d in Conjunction With Iris	h Water: Water
- A	Water Code of Practice for	or Wastewater Infrastructu	ire: IW-CDS-5030-03
21	Standard separation dis	stances refer to STD-WW	2-05 & STD-WW-06
	Foul Manhole (STD-WW-09R1, STD-	WW-10R1,	•
	STD-WW-11R1 & STD-	www-12R1)	
	Foul Inspection Chamb	er	вох
	Foul Sewer Line 150/22 (STD-WW-04, STD-WW STD-WW-07& STD-WW	25mm dia. V-05, STD-WW-06R1, V-08)	
15 4	Foul house connection (STD-WW-01, STD-WV	100mm dia. V-03 & STD-WW-04)	
	Proposed 100mm Polye	ethylene Foul Rising Mair	
	Site Boundary		
724 /	IRISH WATER PUM	P STATION NOTES	
	1. Type 3 pumping s	tations to be located	no closer than 15.0
	2. There shall be a c	boundary. lear opening in front	of the gates to
/]/ /	ensure adequate acc 3. Kiosks to STD-WV	vess. V-30 and STD-WW-3	11.
/ 5/ /	4. tence and gate to 5. Refer to STD-WW	-32 for permeable, in	npermeable roadway
5/ /	and hardstanding are 6. Indicative layout re	ea detail. elates to small pumpi	ng stations as per
5/ /	type 1, type 2 and ty wastewater infrastru	pe 3 in the Irish wate cture <u>.</u>	r code of practice for
	7. Lamp standard an and to Irish water ag	d lamp bollard location reement. Refer to ST	ons to be site specific D-WW-33 for details.
Potential			
Pedestrian 35.114			
Connection 34,938			
	2		
	Rev By Date	Description	
Hargha = 11 205			
34.6.9	H DM 05/24	IW Revision	
29.367	brawing status:	PLANNING	
	Project Title:		
	Residential De	evelopment at Inch	n / Coollegrean,
KS	Drawing Title:	ancy	
]/	Proposed Was	stewater Sewer Li	nes
712	Client:		
51			andre.
	Por	tal Asset Holdings	Ltd.
1 12	5		
		M.H.L & As Consulting	sociates Ltd. Engineers
	MHI	Unit 1b,	Tel: 021-4840214
		Blackpool, Cork	E-Mail:info@mhl.ie
	Designed:	Drawn:	Checked:
	Designed: DM Scale: 1:500 @44	Drawn: DM	Checked: BM
	Designed: DM Scale: 1:500 @A1 1:1000 @A3	Drawn: DM Date:	Checked: BM MAY 2024
	Designed: DM Scale: 1:500 @A1 1:1000 @A3 Job No: 18137HD	Drawn: DM Date: Drawing No: PR-MHL-PWS-P02	Checked: BM MAY 2024 Revision: H

NOTES:

All dimensions in metres. Do not scale from drawing. For any discrepancies found please consult with design office. This drawing is for PLANNING purposed only. Not for Construction.

Legend:

Note: Drawing To Be Read in Conjunction With Irish Water: Water Infrastructure Standard Details Document Number: IW-CDS-5030-01 & Irish Water Code of Practice for Wastewater Infrastructure: IW-CDS-5030-03

Standard separation distances refer to STD-WW-05 & STD-WW-06

All gravity foul sewers to be uPVC. All rising mains to be Polyethylene (P.E)

Rev	Ву	Date	Description							
G	DM	04/24		IW R	evision					
Drav	ving	Status:	Ρ	LAN	NING					
Proje F	Project Title: Residential Development at Inch / Coollegrean, Port Road, Killarney									
Drav I	Drawing Title: Proposed Wastewater Lines Longsections Sheet 1									
Clier	Client: Portal Asset Holdings Ltd.									
M.H.L & Associates Ltd. Consulting Engineers Uni 1b, Tei: 021-48021 The Artime, Fax: 021-48021 Blackpool, E-Maltinfo@mhl Cork						ssociates Ltd. Engineers Tei: 021-4840214 Fax: 021-4840215 E-Maikinto@mhilie				
Desi	gned	: DM	Dra	awn:	СОВ	Checked: BM				
Scal	e: 1 1	:500 @A1 :1000 @A3			Date:	APRIL 2024				
Job	No:		Dra	awing	No:	Revision:				
	1813	37HD	PR-MHL-PS-P03 _G							

18 E. UKSUDS SITE EVALUATION REPORT

(Page left intentionally blank)

Site Drainage Evaluation

Site name: Coollegrean Port Road Site location: Killarney

Report Reference: 1604076583263 Date: 30/10/2020

1. INTRODUCTION

This is a bespoke report providing initial guidance on potential implementation of SuDS for the development site in line with current best practice.

The use of this tool should be supplemented by more detailed guidance on SuDS best practice provided in a <u>number of</u> <u>sources</u>, principally the CIRIA SUDS Manual (2007), other CIRIA documents; the Use of SUDS in High Density Developments, HR Wallingford, (2005) and other HR Wallingford documents.

The objective is to provide some early guidance on the numbers and types of components that might be suitable for consideration within the site design. This may facilitate pre-application discussions with planners and other relevant authorities.

This guidance has been provided prior to the completion of the SUDS standards and the supporting guidance. However the principles of this tool are unlikely to be very different to the aims of the SUDS standards. HR Wallingford is not liable for the use of any output from the use of this tool and the performance of the drainage system. It is recommended that detailed design using appropriately experienced engineers professionals and tools is undertaken before finalising any drainage scheme arrangement for a site.

THE CONTENT OF THE REPORT

This report is split into 8 sections as follows:

- 2. Generic SuDS Best Practice Principles
- 3. Runoff Destination
- 4. Hydraulic Design Criteria
- 5. Water Quality Design Criteria
- 6. Site-Specific Drainage Design Considerations
- 7. SuDS Construction
- 8. SuDS Components Performance
- 9. Guidance on The Use of Individual Components

2. GENERIC SUDS BEST PRACTICE PRINCIPLES

To comply with current best practice, the drainage system should:

- (i) manage runoff at or close to its source;
- (ii) manage runoff at the surface;

(iii) be integrated with public open space areas and contribute towards meeting the objectives of the urban plan;

(iv) be cost-effective to operate and maintain.

The drainage system should endeavour to ensure that, for any particular site:

(i) natural hydrological processes are protected through maintaining Interception of an initial depth of rainfall and prioritising infiltration, where appropriate;

(ii) flood risk is managed through the control of runoff peak flow rates and volumes discharged from the site;(iii) stormwater runoff is treated to prevent detrimental impacts to the receiving water body as a result of urban contaminants.

In addition, it is desirable to maximise the amenity and ecological benefits associated with the drainage system where there are appropriate opportunities. SuDS are green infrastructure components and can provide health benefits, and

reduce the vulnerability of developments to the impacts of climate change.

3. RUNOFF DESTINATION

Introduction

Infiltration should be prioritised as the method of controlling surface water runoff from the development site, unless it can be demonstrated that the use of infiltration would have a detrimental environmental impact.

Groundwater (via Infiltration)

Infiltration may not be appropriate for managing runoff from this site. Robust studies are reqired to confirm the significance of the following constraints to infiltration:

(1) This is a steeply sloping site and full consideration must be given to the hydrogeological infiltration pathways, to ensure that there is no risk of water re-emerging on the site or on other sites and contributing to downstream flood risk.

The groundwater beneath the site is designated as SPZ I, and this designation will define the treatment requirement for any infiltrated water (See Water Quality Design Criteria).

Surface water body

All runoff that cannot be discharged to groundwater will be managed on site and discharged to a surface water body.

The receiving surface water body for runoff from the site is: the River Deenagh. The riparian owner is: .

4. HYDRAULIC DESIGN CRITERIA

Introduction

Best practice criteria for hydraulic control require Interception, runoff and volume control.

Interception

To fulfill the requirements for Interception, there should normally be no runoff from the site for an initial depth of rainfall - usually 5mm. This is achieved through the use of infiltration, evapotranspiration, or rainwater harvesting.

If practicable, infiltration systems should be used to meet the Interception requirements for the site.

Flow and Volume Control

The site is a greenfield development, therefore runoff from the site needs to be constrained to the equivalent greenfield rates and volumes.

Infiltration and rainwater harvesting, or the use of Long Term Storage provide the means to limit runoff to the greenfield volume. Where volume control is not practicable, flows discharged from the site will need to be constrained to Qbar or 2 l/s/ha (whichever is the greater).

If practicable, infiltration systems should be used to manage runoff up to the 10 year event. Other components within the drainage system will need to be designed to manage runoff in excess of this event.

Attenuation and hydraulic controls will be used to manage flow rates.

5. WATER QUALITY DESIGN CRITERIA

Introduction

Current best practice takes a risk-based approach to managing discharges of surface runoff to the receiving environment. The following text provides guidance on the extent of water quality management likely to be appropriate for the site.

Hazard Classification

Runoff from clean roof surfaces (ie not metal roofs, roofs close to polluted atmospheric discharges, or roofs close to

populations of flocking birds) is classified as Low in terms of hazard status.

Runoff from roads, parking and other areas of residential, commercial and industrial sites (that are not contaminated with waste, high levels of hydrocarbons, or other chemicals) is classified as Medium in terms of hazard status.

Treatment requirements for disposal to groundwater systems

Runoff from roofs will need one effective treatment stage prior to disposal to groundwater. Where sediment and other litter is prevented from entering the infiltration device, and the underlying subsoils can be demonstrated to provide effective treatment, then the process of infiltration will usually be sufficient.

Runoff from roads and parking areas will need 3 effective treatment stages prior to disposal to groundwater. Where sediment and litter is prevented from entering the infiltration device, and the underlying subsoils can be demonstrated to provide effective treatment, then the process of infiltration will usually be deemed to constitute one treatment stage. Two further upstream treatment stages will also be required.

Infiltration may only be used where a risk assessment has been undertaken in accordance with <u>http://www.netregs.gov.uk/netregs/100789.aspx</u>, and the design effectively addresses the risks identified within the risk assessment.

Treatment requirements for disposal to surface water systems

The level of urbanisation of the catchment at the point of the discharge from the site is < 20%, therefore it may be classified as a sensitive receptor.

The receiving catchment is designated as an environmentally sensitive receptor.

Roof runoff will require 1 treatment stage prior to discharge.

Runoff from other parts of this site such as roads, parking and other areas will require 3 treatment stages prior to discharge.

6. SITE-SPECIFIC DRAINAGE DESIGN CONSIDERATIONS

The site is a high density residential site. The HR Wallingford documenet 'SuDS for high density developments' is a useful guidance document for efficient drainage design where space is heavily constrained.

Components likely to be particularly suitable for high density sites include:

• permeable pavement parking areas which can often manage roof runoff as well as rainfall falling on the parking surface;

- green roofs which limit runoff from roof surfaces;
- bioretention areas integrated within impermeable zones;
- individual property soakaways;
- subsurface infiltration and/or detention systems (eg beneath functional, permeable surfaces);
- infiltration/detention/retention ponds/basins/channels integrated within public open space areas.

Where SuDS are being designed for sites with steep slopes, careful consideration of site layout planning and SUDS alignment is needed to minimise gradients of conveyance pathways and construction of large embankments, and to minimise flood risk when drainage systems are exceeded.

The design of SuDS with access to temporary or permanent water should consider public health and safety as well as issues associated with construction and operational management of the structures. Health and safety issues and risk mitigation features are presented in the <u>CIRIA SuDS Manual</u>.

Individual SuDS components should not be treated in isolation, but should be seen together as providing a suite of drainage features which are appropriate in different combinations for varying scales. It is always desirable to have a mix of SuDS components across the site as different components have different capacities for treatment of individual pollutants.

7. SuDS CONSTRUCTION

SuDS are a combination of civil engineering structures and landscaping practice. Due to the limited experience of building SuDS in the water industry, there are a number of key issues which need to be particularly considered as their construction requires a change in approach to some standard construction practices.

• SuDS components should be constructed in line with either the manufacturer's guidelines or best practice methods.

• The construction of SuDS usually only requires the use of fairly standard civil engineering construction and landscaping operations, such as excavation, filling, grading, top-soiling, seeding, planting etc. These operations are specified in various standard construction documents, such as the Civil Engineering Specification for the Water Industry (CESWI).

• Construction of soakaways is regulated by the Buildings Regulations part H (Drainage and waste disposal) which sets out the requirements for drainage of rainwater from the roofs of buildings.

• During construction, any surfaces which are intended to enable infiltration must be protected from compaction. This includes protecting from heavy traffic or storage of materials.

• Water contaminated with silt must not be allowed to enter a watercourse or drain as it can cause pollution. All parts of the drainage system must be protected from construction runoff to prevent silt clogging the system and causing pollution downstream. Measures to prevent this include soil stabilisation, early construction of sediment management basins, channelling run-off away from watercourses and surface water drains, and erosion prevention measures.

• After the end of the construction period and prior to handover to the site owner/operator:

- Subsoil that has been compacted during construction activities should be broken up prior to the re-application of topsoil to garden areas and other areas of public open space to reinstate the natural infiltration performance of the ground;

- Any areas of the SuDs that have been compacted during construction but are intended to permit infiltration must be completely refurbished;

- Checks must be made for blockages or partial blockages of orifices or pipe systems;
- Any silt deposited during the construction must be completely removed;
- Soils must be stabilised and protected from erosion whilst planting becomes established.

Detailed guidance on the construction related issues for SuDS is available in the SuDS Manual and the associated <u>Construction Site handbook</u> (CIRIA, 2007).

	Interception	Peak flow control: Low	Peak flow control: High	Volume reduction	Volume control	Gross sediments	Fine sediments	Hydrocarbons/ PAHs	Metals	Nutrients
Rainwater Harvesting	Y	Y	S	Y	Ν	N	N	N	Ν	N
Pervious Pavement	Y	Y	Y	Y	Y	Y	Y	Y	Y	Var
Filter Strips	Y	N	N	N	Ν	Y	N	Y	Y	Var
Swales	Y	Y	S	Y(*)	Ν	Y	Y(+)	Y	Y	Y(-)
Trenches	Y	Y	S	Y(*)	Ν	N	N	Y	Y	Y(-)
Detention Basins	Y	Y	Y	Ν	Y	Y	Y(+)	Y	Y	Var
Ponds	N	Y	Y	N	Y	N(~)	Y	Limited	Y	Var
Wetlands	N	Y	S	N	Y	N(~)	Y	Limited	Y	Y
Soakaways	Y	Y	S	Y	Ν	N(~)	N(~)	Y(")	Y(")	N
Infiltration Basins	Y	Y	S	Y	Ν	N(~)	N(~)	Y(")	Y(")	N
Green Roofs	Y	Y	N	N	N	N	N	Y	N	N
Bioretention Systems	Y	Y	S	Y(*)	Ν	N(~)	Y	Y	Y	Y
Proprietary Treatment Systems	N	N	N	N	Ν	Y	Y	Y(!)	Y(!)	Y(!)
Subsurface Storage	N	Y	Y	Ν	Y	N(~)	N	N	Ν	N
Subsurface Conveyance Pipes	N	N	N	N	Y	N(~)	N	N	Ν	N

8. SuDS COMPONENTS PERFORMANCE

Notes:

S: Not normally with standard designs, but possible where space is available and designs mitigate impact of high flow rates.

Y(*): Where infiltration is facilitated by the design.

N(~): Gross sediment retention is possible, but not recommended due to negative maintenance and performance implications.

Y(+): Where designs minimise the risk of fine sediment mobilisation during larger events.

Y(!): Where designs specifically promote the trapping and breakdown of oils and PAH based constitutents.

Y("): Where subsurface soil structure facilitates the trapping and breakdown of oils and PAH based constituents.

Var: The nutrient removal performance is variable, and can be negative in some situations.

Y(-): Good nutrient removal performance where subsurface biofiltration systems with a permanently saturated zone included within the design.

9. GUIDANCE ON THE USE OF INDIVIDUAL COMPONENTS

Rainwater Harvesting

• High density

For large occupancy buildings (offices, supermarkets, etc.), communal rainwater harvesting systems may provide significant stormwater management benefits.

• Roofs

Rainwater harvesting systems can be used to effectively drain roofs and provide both water supply and stormwater management benefits.

Pervious Pavement

• High density

Pervious pavement systems provide an effective way to drain, store and treat the surface runoff, all within the footprint of the car park area. Larger areas of communal parking will provide the most cost effective systems.

Roofs

Roof water can be drained into pervious pavement areas using diffusers to dissipate the point inflows. Detailed design of the pavement will need to take account of the additional impermeable roof area.

Roads

Some types of pervious pavement can be used for relatively highly trafficked roads and pavement manufacturers should be consulted on the appropriate specification.

• Car parks/other impermable surfaces

Pervious pavements provide effective drainage, storage and treatment of car park surfacing,

• Steep site

Pervious pavements can be used on sloping sites, with the use of internal dams in order to attenuate and store the water effectively through a cascade system.

Filter Strips

• High density

Filter strips can be used as treatment for road or car park runoff where space allows.

• Roads

Filter strips can provide treatment for road runoff, upstream of swales or trench components. They can reduce the need for kerbing and runoff collection systems.

• Car parks/other impermable surfaces

Filter strips can provide treatment for runoff from impermeable surfaces, upstream of swales or trench components. They can reduce the need for kerbing and runoff collection systems.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Filter strips can be used on sloping sites, where implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Swales

• High density

Swales can be used for road or car park drainage where space allows. Underdrained swales (ie with a subsurface gravel filled conveyance and treatment trench) can provide a more efficient solution for hydraulic control and water quality treatment.

• Roofs

Swales can be used to convey roof water to other parts of the site.

Roads

Swales provide treatment and conveyance of road runoff. There are a range of swale types - standard grass channels, underdrained swales, and wetland swales - depending on drainage requirements.

• Car parks/other impermable surfaces

Swales provide treatment and conveyance of runoff from impermeable areas. There are a range of swale types - standard grass channels, underdrained swales, and wetland swales - depending on drainage requirements.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

Steep site

Swales can be used on sloping sites, where implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Trenches

• High density

Trenches can provide treatment and runoff control for road or car park drainage.

• Roofs

Trenches can be used to convey roof water to other parts of the site.

• Roads

Trenches can provide treatment and conveyance of road runoff. They require effective pretreatment to minimise the risk of blockage.

• Car parks/other impermable surfaces

Trenches can provide treatment and conveyance of runoff for impermeable areas.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Trenches can be used on sloping sites, where implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Detention Basins

• High density

Detention basins can be used in high density developments when effectively integrated within public open space areas.

• Roofs

Detention basins can be used to attenuate and treat runoff.

Roads

Detention basins can be used to attenuate and treat runoff.

• Car parks/other impermable surfaces

Detention basins can be used to attenuate and treat runoff.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria. A risk assessment should be used to determine the maximum appropriate depth of stored water in the basin.

• Steep site

Large basins may require embankments that may pose a safety risk to site residents.

Ponds

• High density

It is unlikely that a pond would be suitable for high density development, unless it is an integral amenity feature within the public open space area.

• Roofs

Ponds can be used to attenuate and treat roof runoff.

• Roads

Ponds can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in ponds for extended periods, nutrient concentrations can rise - particularly in the summer months, and the pond can become unattractive with poor amenity and biodiversity potential.

• Car parks/other impermable surfaces

Ponds can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in ponds for extended periods, nutrient concentrations can rise - particularly in the summer months, and the pond can become unattractive with poor amenity and biodiversity potential.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Large ponds may require embankments that may pose a safety risk to site residents.

Other

Ponds built in permeable soils will require lining to maintain the water level of the permanent pool. The lining may be finished 100 or 200 mm lower than the outlet invert to encourage some infiltration to take place to contribute to interception.

Wetlands

• High density

It is unlikely that a wetland would be suitable for high density development, unless it is an integral amenity feature within the public open space area.

• Roofs

Wetlands can be used to attenuate and treat roof runoff.

Roads

Wetlands can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in wetlands for extended periods, nutrient concentrations can rise - particularly in the summer months, and the wetland can become unattractive with poor amenity and biodiversity potential.

• Car parks/other impermable surfaces

Wetlands can be used to attenuate and treat runoff. However, they are best implemented at the lower end of the treatment train as a 'polishing' component. They should not be used as sediment management devices, as sediment and wet vegetation is relatively costly to extract and dispose of. If poor quality water remains in wetlands for extended periods, nutrient concentrations can rise - particularly in the summer months, and the wetland can become unattractive with poor amenity and biodiversity potential.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

It is likely that wetlands would require embankments that may pose safety risks to site residents.

Soakaways

• High density

Individual property soakaways can be built in garden areas. Attenuation storage can be built beneath impermeable surfaces such as roads or car parks or public spaces, thus minimising the use of space needed for the drainage system.

• Roofs

Soakaways can be used to store, treat, and dispose roof runoff.

• Roads

Upstream treatment is normally required if soakaways are used to manage road runoff directly. Sediments and litter should be prevented from entering the soakaway.

• Car parks/other impermable surfaces

Upstream treatment is normally required if soakaways are used to manage road runoff directly. Sediments and litter should be prevented from entering the soakaway.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Consideration must be given to the risk of infiltrated water re-emerging further down the slope and causing a downstream flood hazard.

Infiltration Basins

• HighDensity

Infiltration basins can often be used in high density developments when effectively integrated within public open space areas.

• Roofs

Infiltration basins can be used to attenuate and treat roof runoff.

• Roads

Upstream treatment is normally required if infiltration basins are used to manage road runoff. Sediments should be prevented from entering the system.

Car parks/other impermable surfaces

Upstream treatment is normally required if infiltration basins are used to manage runoff from trafficked surfaces. Sediments should be prevented from entering the system.

• Site size > 50 ha

The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria. A risk assessment should be used to determine the maximum depth of stored water in the basin.

• Steep site

Consideration must be given to the risk of infiltrated water re-emerging further down the slope and causing a downstream flood hazard. Large basins may require embankments that may pose safety risks to downstream residents.
Green Roofs

HighDensity

Green roofs can be implemented most cost-effectively on larger roofs. They provide a range of benefits in addition to stormwater management, including combatting the heat island effect, biodiversity and amenity functions.

• Roofs

Green roofs can be designed to provide interception, management and treatment of rainfall up to specified rainfall depths.

Bioretention Systems

• High density

Biorention systems (either cells or linear systems) can be used for road or car park drainage where space allows.

• Roofs

Bioretention systems can be used to attenuate and treat roof runoff.

• Roads

Linear bioretention systems (ie biofiltration swales) can be used to attenuate and treat road runoff.

• *Car parks/other impermable surfaces* Bioretention systems canbe used for car park drainage.

• Site size > 50 ha

Bioretention systems will tend to be suitable for managing small areas only. The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

• Steep site

Bioretention systems can be used on sloping sites, when implemented parallel to the contours. The consequences of exceedance and flood flow paths will need to be considered.

Proprietary Treatment Systems

• High density

Proprietary treatment systems may be appropriate to use particularly where there is no space for surface, vegetated treatment systems. However, regular monitoring needs to be ensured so that they are maintained so that they continue to function effectively.

• Roads

Proprietary treatment systems can be used where surface vegetated systems are impracticable. However, regular monitoring needs to be ensured so that they are maintained so that they continue to function effectively.

• Car parks/other impermable surfaces

Proprietary treatment systems could be used where surface vegetated systems are impracticable. However, regular monitoring needs to be ensured so that they are maintained so that they continue to function effectively.

• Site size > 50 ha

Proprietary treatment systems will tend to be suitable for managing small areas only. The size of area that can be drained will be limited by meeting the hydraulic and water quality criteria.

Subsurface Storage

• High density

Subsurface storage of runoff is likely to be needed for high density developments. This can be implemented via a range of proprietary high void systems, or within gravels beneath permeable pavements which provide treatment as well. Subsurface storage allows the land above the storage system to be used for car parking or public open space areas.

• Roofs

Subsurface storage can be used to attenuate roof runoff.

• Roads

Subsurface storage can be used to attenuate road runoff.

• Car parks/other impermable surfaces

Subsurface storage can be used to attenuate car park runoff.

Subsurface Conveyance Pipes

• High density

Subsurface conveyance systems may be an important means of connecting drainage components together and routing flows downstream. Space constraints in high density developments are likely to constrain the use of surface conveyance options.

<u>HR Wallingford Ltd</u>, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.

19 F. GREENFIELD RUNOFF RATE

(Page left intentionally blank)

52

Calculated by:	James Daly
Site name:	Port Road
Site location:	KIllarney

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

Latitude:	52.06472° N
Longitude:	9.51891° W
Reference:	6523016
Date:	2019-02-04T10:37:24

Methodology	IH124					
Site characteristics						
Total site area (ha)			5			
Methodology						
Qbar estimation metho	bc	Calculate fro	om SPR ar	nd SAAR		
SPR estimation metho	bd	Calculate fro	om SOIL ty	/pe		
			Default	Edited		
SOIL type			2	2		
HOST class						
SPR/SPRHOST			0.3	0.3		
Hydrological charact	eristic	s	Default	Edited		
SAAR (mm)			1666	1560		
Hydrological region		13	13			
Growth curve factor: 1		0.85	0.85			
Growth curve factor: 30 year			1.65	1.65		
Growth curve factor: 1	00 ye	ar	1.95	1.95		

Notes:

(1) Is Q_{BAR} < 2.0 l/s/ha?

(2) Are flow rates < 5.0 l/s?

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite may be a requirement for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Qbar (l/s)	25.13	23.27
1 in 1 year (l/s)	21.36	19.78
1 in 30 years (l/s)	41.47	38.4
1 in 100 years (l/s)	49.01	45.38

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

20 G. SURFACE WATER INFILTRATION/STORAGE

(Page left intentionally blank)

53

Resolute Engineering	Group Ltd						Page 1
la Moyne Road		Port	Road	Dev Killa	rney T	ank 2	
Baldoyle			100YRP+10%				
Co. Dublin, D13 YV4X		5.01	/s				Viero
D_{2} D_{2	5	Doci	anod h			10	- MICLO
Date 09/08/2021 10:1		Desi		y SIORMIE	Ch SC/	40	Drainage
File		Chec	ked by	, Pb			
Innovyze		Sour	ce Con	trol 2020	.1		
Summary of	of Results	for 10	0 year	<u>Return F</u>	eriod	(+10%)	_
	Half D	Drain Ti	me : 55	minutes.			
							a
Storm	Max Max	Ma Trefilt	ax motion	Max Control V (Max	Max	Status
Evenc	(m) (m)	(1,		(1/a)	(1/e)	(m ³)	
	(ш) (ш)	(1)	5)	(1/5)	(1/5)	(111)	
15 min Winter	0.677 0.677		9.3	5.0	13.7	60.5	O K
30 min Winter	0.897 0.897		9.9	5.0	14.4	80.2	O K
60 min Winter	1.037 1.037		10.2	5.0	15.1	92.7	O K
120 min Winter	1.061 1.061		10.3	5.0	15.2	94.8	O K
180 min Winter	1.017 1.017		10.2	5.0	15.0	90.9	O K
240 min Winter	0.955 0.955		10.0	5.0	14.7	85.3	O K
360 min Winter	0.811 0.811		9.7	5.0	14.0	72.5	O K
480 min Winter	0.656 0.656		9.3	5.0	13.7	58.7	O K
600 min Winter	0.510 0.510		8.9	5.0	13.7	45.6	O K
720 min Winter	0.389 0.389		8.6	5.0	13.5	34.8	O K
960 min Winter	0.216 0.216		8.1	4.9	13.0	19.3	O K
1440 min Winter	0.091 0.091		7.8	3.2	11.0	8.1	O K
2160 min Winter	0.047 0.047		7.3	1.1	8.4	4.2	O K
2880 min Winter	0.040 0.040		6.1	0.8	7.0	3.5	O K
4320 min Winter	0.031 0.031		4.7	0.5	5.3	2.7	0 K
5760 min Winter	0.025 0.025		3.9	0.4	4.3	2.2	0 K
7200 min Winter	0.022 0.022		3.4	0.3	3.7	2.0	0 K
8640 min Winter	0.020 0.020		3.1	0.2	3.3	1.8	0 K
10080 min Winter	0.018 0.018		2.7	0.2	2.9	1.6	ΟK
	Storm	Pain	Flooder	Discharge	Time-D	ook	
	Event	(mm/hr)	Volume	Volume	(mins	ean c)	
		(/	(m ³)	(m ³)	(
15	min Winter	94.243	0.0	75.2		23	
30	min Winter	65.085	0.0	103.8		35	
60	min Winter	42.570	0.0	135.8		60	
120	min Winter	27.128	0.0	173.2		96	
180	min Winter	20.694	0.0	198.2		134	
240	min Winter	17.041	0.0	217.5		172	
360	min Winter	12.934	0.0	247.7		244	
480	min Winter	10.625	0.0	271.3		314	
600	min Winter	9.120	0.0	291.1		374	
720	min Winter	8.049	0.0	308.3		434	
960	min Winter	6.606	0.0	337.3		540	
1440	min Winter	4.991	0.0	382.3		/52	
2160	min Winter	3.764	0.0	432.5	1	104	
2880	min Winter	3.078	0.0	471.6	1	452	
4320	min Winter	2.317	0.0	532.5	2	200	
5760	min Winter	1.895	0.0	580.6	2	832	
/200	min winter	1 420	0.0) 621.1	3	04U 272	
8640	min Winter	1 204	0.0		4.	~ 1 Z	
T0080	MITH MIHLEL	⊥.∠84	0.0	, 088.0	5	U J Z	

©1982-2020 Innovyze

Resolute Engineering Group Ltd		Page 2
1a Moyne Road	Port Road Dev Killarney Tank 2	
Baldoyle	100YRP+10%	
Co. Dublin, D13 YV4X	5.01/s	Micro
Date 09/08/2021 10:15	Designed by STORMTECH SC740	Desinado
File	Checked by LP	Diamage
Innovyze	Source Control 2020.1	·

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.250	Longest Storm (mins) 10080
Summer Storms	No	Climate Change % +10

<u>Time Area Diagram</u>

Total Area (ha) 0.380

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.127	4	8	0.127	8	12	0.127

Resolute Engineering Group Ltd			Page 3			
1a Moyne Road	Port Road D	ev Killarney Tar	nk 2			
Baldoyle	100YRP+10%					
Co. Dublin, D13 YV4X	5.01/s		Micco			
Date 09/08/2021 10:15	Designed by	STORMTECH SC740				
File	Checked by	LP	Drainage			
Innovvze	Source Cont	rol 2020.1				
M	odel Detail	5				
Storage is On	line Cover Le	<i>r</i> el (m) 2.000				
	<u>r storage st</u>	ructure				
Inver	t Level (m)	0.000 Safety Facto	r 2.0			
Infiltration Coefficient	Base (m/hr) 0.	.36700 Porosit	у 0.60			
Infiltration Coefficient	Side (m/hr) 0	36700				
Depth (m) Area (m ²) Inf. Are	a (m²) Depth	(m) Area (m²) Inf.	Area (m²)			
		(,				
0.000 149.0	149.0 1.2	200 0.0	203.8			
1.100 149.0	203.8					
Hydro-Brake®	Optimum Out	flow Control				
	·					
Unit	Reference MD-	SHE-0104-5000-1100-	-5000			
Design	n Head (m)	1	1.100			
Design	Flow (1/s)	Calcul	5.U			
1	Objective Mi	nimise unstream sto				
Ar	oplication MI	Sui	rface			
Sump	Available		Yes			
Diar	neter (mm)		104			
Invert	Level (m)	(0.000			
Minimum Outlet Pipe Diar Suggested Manhele Diar	neter (mm)		150			
	(interest (interest)		1200			
Control Poi	ints Head	d (m) Flow (l/s)				
Design Point (Ca	(culated)	.100 5.0				
F	lush-Flo™ (5.0				
	Kick-Flo® (4.0				
Mean Flow over H	ead Range	- 4.4				
The hydrological calculations have be	een based on t	he Head/Discharge 1	relationship for the			
Hydro-Brake® Optimum as specified.	Should another	type of control de	evice other than a			
Hydro-Brake Optimum® be utilised the	n these storag	e routing calculati	ions will be			
invalidated						
Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth	(m) Flow (1/s) Dept	th (m) Flow (l/s)			
	5.2 3.0		7 500 12.0			
0.300 5.0 1.600	6.0 4	00 9.2	8.000 12.7			
0.400 5.0 1.800	6.3 4.9	500 9.7	8.500 13.1			
0.500 4.8 2.000	6.6 5.0	10.2	9.000 13.5			
0.600 4.6 2.200	6.9 5.9	500 10.7	9.500 13.8			
0.800 4.3 2.400	7.2 6.0	000 11.1				
1.000 4.8 2.600 7.5 6.500 11.5						
 ∩ ∩ 0	2-2020	71720				
	2 2020 IIIIO	y y 2 C				

Resolute Engineer	ing Group Ltd	l					Page 1
la Moyne Road		Port	Road	Dev Killa	arney T	ank 3	
Baldoyle		1004	RP+10%				
Co. Dublin. D13 Y	W4X	5.01	/s				Mission
D_{2} D_{2	1.00	Doci	anod h			10	MILIU
Date 11/00/2021 1	4.00	Desi		y SIORMII	SCH SC/	40	Drainage
File		Chec	cked by	ГЪ			
Innovyze		Sour	ce Con	trol 2020	0.1		
<u>Summa</u>	<u>ry of Results</u>	for 10) <u>0 y</u> ear	Return 1	Period	(+10%)	<u> </u>
	Half	Drain Ti	.me : 41	minutes.			
Storm	May May	м	- v	Max	Мач	May	Status
Storm	Max Max Level Dept	M h Tnfilt	ax ration (Max Control S	Max Outflow	Volume	Status
Livenc	(m) (m)	(1	/s)	(1/s)	(1/s)	(m ³)	
	(/	、	, _,	(_/ _/	(-/-/	, ,	
15 min Wi	nter 0.737 0.73	7	29.4	5.0	33.5	104.8	O K
30 min Wi	nter 0.963 0.96	3	30.8	5.0	35.5	137.0	ОК
60 min Wi	nter 1.066 1.06	6	31.5	5.0	36.4	151.6	O K
120 min Wi	nter 1.033 1.03	3	31.3	5.0	36.1	146.9	OK
180 min Wi	nter 0.941 0.94	1	30.7	5.0	35.3	133.9	OK
240 min Wi	nter 0.834 0.83	4	30.0	5.0	34.4	118.5	OK
480 min Wi	nter 0.612 0.61	2	20.0	5.0	32.1	50 7	OK
400 min Wi	nter 0 269 0 26	9	26.4	5.0	32.5	28.2	0 K 0 K
720 min Wi	nter 0 162 0 16	2	25.7	4 6	30 3	23 1	0 K
960 min Wi	nter 0.064 0.06	4	25.1	1.9	27.0	9.2	0 K
1440 min Wi	nter 0.040 0.04	0	20.1	0.8	20.9	5.7	0 K
2160 min Wi	nter 0.031 0.03	1	15.4	0.5	15.9	4.4	O K
2880 min Wi	nter 0.025 0.02	5	12.6	0.4	13.0	3.6	O K
4320 min Wi	nter 0.019 0.01	9	9.6	0.2	9.8	2.7	O K
5760 min Wi	nter 0.016 0.01	6	7.9	0.1	8.0	2.3	O K
7200 min Wi	nter 0.014 0.01	4	6.9	0.3	7.0	1.9	O K
8640 min Wi	nter 0.012 0.01	2	6.1	0.3	6.2	1.7	O K
10080 min Wi	nter 0.011 0.01	1	5.4	0.3	5.4	1.6	0 K
	Storm	Pain	Floodod	Discharge	Timo-D	ook	
	Event	(mm/hr)	Volume	Volume	(mine		
	Evenc	((m ³)	(m ³)	(11111)	·)	
			()	()			
	15 min Winter	94.243	0.0	140.5	i	22	
	30 min Winter	65.085	0.0	194.0)	33	
	60 min Winter	42.570	0.0	253.8		56	
	120 min Winter	27.128	0.0	323.6		92	
	180 min Winter	20.694	0.0	370.2		130	
	240 min Winter	17.041	0.0	406.5)	166	
	360 min Winter	10 625	0.0	462.8		232	
	600 min Winter	10.023 9 120	0.0	5/3 9		∠ ୬4 350	
	720 min Winter	8 049	0.0	576 0		402	
	960 min Winter	6.606	0.0	630.3		506	
	1440 min Winter	4.991	0.0	714.3		736	
	2160 min Winter	3.764	0.0	808.0	1	076	
	2880 min Winter	3.078	0.0	881.1	. 1	452	
	4320 min Winter	2.317	0.0	995.0	2	160	
	5760 min Winter	1.895	0.0	1084.8	2	848	
	7200 min Winter	1.621	0.0	1160.4	3	552	
	8640 min Winter	1.429	0.0	1226.8	4	264	
1	0080 min Winter	1.284	0.0	1286.6	, 5	032	

©1982-2020 Innovyze

Resolute Engineering Group Ltd		Page 2
1a Moyne Road	Port Road Dev Killarney Tank 3	
Baldoyle	100YRP+10%	
Co. Dublin, D13 YV4X	5.01/s	Mirco
Date 11/08/2021 14:00	Designed by STORMTECH SC740	Desinado
File	Checked by LP	Diamage
Innovyze	Source Control 2020.1	·

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.250	Longest Storm (mins) 10080
Summer Storms	No	Climate Change % +10

<u>Time Area Diagram</u>

Total Area (ha) 0.710

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.237	4	8	0.237	8	12	0.237

Resolute Engineering Group Ltd			Page 3
la Moyne Road	Port Road Dev K	illarney Tank	: 3
Baldoyle	100YRP+10%		
Co. Dublin, D13 YV4X	5.01/s		Micco
Date 11/08/2021 14:00	Designed by STO	RMTECH SC740	Dcainago
File	Checked by LP		Diamage
Innovyze	Source Control	2020.1	L
<u>1</u>	<u>Model Details</u>		
Storage is O	line Cover Level (m) 2 000	
Storage is of	IIINE COVEL DEVEL (111) 2.000	
Cellula	<u>r Storage Struct</u>	ure	
Inve	t Level (m) 0.00	0 Safety Factor	2.0
Infiltration Coefficient	Base (m/hr) 0.7488 Side (m/hr) 0.7488	0 Porosity	0.60
$\mathbf{D}_{\mathbf{n}} = \mathbf{D}_{\mathbf{n}} $	(m^2) Dooth (m) A	ν πορ (m ²) Thf λ	(max)
		rea (m ⁻) ini. A	rea (m ⁻)
0.000 237.0 1.100 237.0	237.0 1.200 304.8	0.0	304.8
<u>Hydro-Brake®</u>	Optimum Outflow	<u>Control</u>	
Unit	Reference MD-SHE-0	0104-5000-1100-5	000
Design	n Head (m) Flow (l/s)	1.	100
Design	riow (i/s) Flush-Flo™	Calcula	J.U ated
	Objective Minimis	se upstream stor	age
A	pplication	Surf	ace
Sump	Available		Yes
Dia Invert	meter (mm) Level (m)	0.	000
Minimum Outlet Pipe Dia	meter (mm)	0.	150
Suggested Manhole Dia	meter (mm)	1	.200
Control Po	ints Head (m)	Flow (l/s)	
Design Point (Ca	alculated) 1.100	5.0	
I	Flush-Flo™ 0.323	5.0	
	Kick-Flo® 0.690	4.0	
Mean Flow over H	lead Range -	4.4	
The hydrological calculations have b	een based on the He	ead/Discharge re	lationship for the
Hydro-Brake® Optimum as specified.	Should another type	e of control dev	rice other than a
Hydro-Brake Optimum® be utilised the	n these storage rou	ting calculatio	ns will be
invariation			
Depth (m) Flow (1/s) Depth (m) Flow	r (l/s) Depth (m) F	low (l/s) Depth	(m) Flow (1/s)
0.100 3.5 1.200	5.2 3.000	8.0 7	.000 12.0
0.200 4.8 1.400	5.6 3.500	8.6 7	.500 12.4
0.300 5.0 1.600	6.0 4.000	9.2 8	.000 12.7
	6.3 4.500	9./ 8	.500 13.1 000 12.5
0.600 4.6 2.000	6.9 5.000	10.2 9	13.5 1.500 13.8
0.800 4.3 2.400	7.2 6.000	11.1	10.0
1.000 4.8 2.600	7.5 6.500	11.5	
©198	32-2020 Innovyze		
L			

Resolute Engineering G	Page 1					
la Moyne Road		Port Road	Dev Killa	rney Tank 4		
Baldoyle		100YRP+10%	5			
Co. Dublin, D13 YV4X	Dublin, D13 YV4X 5.01/s					
$D_{2+2} = 0.9/0.8/2021 + 10.30$	MILLO					
Date 09/08/2021 10.30		Charled L	y SIORMIE	CH SC/40	Drainage	
File						
Innovyze		Source Con	trol 2020	.1		
<u>Summary of</u>	Results f	<u>or 100 yea</u>	<u>r Return P</u>	<u>eriod (+10%</u>)	
	Half Dra	ain Time : 65	minutes.			
8t				Ma	C b = b = c	
Storm	Max Max	Max	Max Control 5 C	Max Max	Status	
Event 1	(m) (m)	(1/a)	(1/a)	(1/c) (m ³)		
	(ш) (ш)	(1/5)	(1/5) ((1/5) (111)		
15 min Winter C	0.650 0.650	1.0	5.0	5.9 27.8	O K	
30 min Winter C	.871 0.871	1.1	5.0	5.9 37.2	O K	
60 min Winter 1	.022 1.022	1.1	5.0	6.0 43.7	O K	
120 min Winter 1	.066 1.066	1.1	5.0	6.1 45.5	O K	
180 min Winter 1	.040 1.040	1.1	5.0	6.0 44.4	O K	
240 min Winter C	0.990 0.990	1.1	5.0	5.9 42.3	ОК	
360 min Winter C	0.866 0.866	1.1	5.0	5.9 37.0	ОК	
480 min Winter (0.725 0.725	1.0	5.0	5.9 31.0	OK	
600 min Winter (1.552 0.552	1.0	5.0	5.9 23.6	O K	
960 min Winter (2.421 0.421	0.9	19	5.8 10.5	OK	
1440 min Winter 0	119 0 119	0.9	4 2	5 0 5 1	0 K	
2160 min Winter 0	0.087 0.087	0.8	3.0	3.8 3.7	O K	
2880 min Winter 0	0.073 0.073	0.8	2.3	3.1 3.1	0 K	
4320 min Winter 0	0.057 0.057	0.8	1.5	2.3 2.4	O K	
5760 min Winter C	0.048 0.048	0.8	1.2	1.9 2.1	O K	
7200 min Winter C	0.043 0.043	0.7	1.0	1.6 1.8	O K	
8640 min Winter C	0.040 0.040	0.6	0.8	1.4 1.7	O K	
10080 min Winter 0	0.037 0.037	0.6	0.7	1.3 1.6	O K	
St	corm F	Rain Floode	d Discharge	Time-Peak		
Ev	vent (m	m/hr) Volume	Volume	(mins)		
		(m ³)	(m³)			
15 m	in Winter 9	4.243 0.0	0 33.6	2.3		
30 m	in Winter 6	5.085 0.0	0 46.4	35		
60 m	in Winter 4	2.570 0.0	0 60.8	60		
120 m	in Winter 2	7.128 0.0	0 77.5	98		
180 m	in Winter 2	0.694 0.0	0 88.7	138		
240 m	in Winter 1	7.041 0.0	97.3	176		
360 m	in Winter 1	2.934 0.0	0 110.8	250		
480 m	in Winter 1	0.625 0.0	0 121.4	324		
600 m	in Winter	9.120 0.0	130.2	382		
720 m	in Winter	8.049 0.0	137.9	438		
960 m	in Winter	0.606 0.0	U 150.9	544		
1440 m	in Winter	4.991 0.0	J 102 E	/44		
2160 m	in Winter	3.704 0.0	J 193.5 N 211 ∩	1104 1161		
4320 m	in Winter	2.317) 238.2	2192		
5760 m	in Winter	1.895 0.0	259.7	2888		
7200 m	in Winter	1.621 0.0	277.8	3672		
8640 m	in Winter	1.429 0.0	293.7	4400		
10080 m	in Winter	1.284 0.0	308.1	5040		

©1982-2020 Innovyze

Resolute Engineering Group Ltd		Page 2
1a Moyne Road	Port Road Dev Killarney Tank 4	
Baldoyle	100YRP+10%	
Co. Dublin, D13 YV4X	5.01/s	Micro
Date 09/08/2021 10:30	Designed by STORMTECH SC740	Desinado
File	Checked by LP	Diamage
Innovyze	Source Control 2020.1	·

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.250	Longest Storm (mins) 10080
Summer Storms	No	Climate Change % +10

<u>Time Area Diagram</u>

Total Area (ha) 0.170

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.057	4	8	0.057	8	12	0.057

Resolute Engineering Group Ltd			Page 3
1a Moyne Road	Port Road Dev 1	Killarney Tank	4
Baldoyle	100YRP+10%		
Co. Dublin, D13 YV4X	5.01/s		Micco
Date 09/08/2021 10:30	Designed by ST	ORMTECH SC740	
File	Checked by LP		Drainage
Innovyze	Source Control	2020.1	
- 1 -			
<u>1</u>	<u>Model Details</u>		
Storage is Or	nline Cover Level	(m) 2.000	
Collula	r Storago Strug	+1170	
	I Storage Struc	<u>ture</u>	
Inver	t Level (m) 0.00	00 Safety Factor	2.0
Infiltration Coefficient	Base (m/hr) 0.077	04 Porosity	0.60
Infiltration Coefficient	Side (m/hr) 0.0770	04	
Depth (m) Area (m ²) Inf. Are	a (m²) Depth (m)	Area (m²) Inf. Ar	ea (m²)
-			
	71.2 108 4	0.0	108.4
1.100 /1.2	100.1		
<u>Hydro-Brake®</u>	Optimum Outflo	w Control	
Unit	Reference MD-SHE-	0104-5000-1100-50	000
Design	n Head (m) Flow (l/s)	1.1	.00 5 0
Design	Flush-Flo™	Calculat	ed
	Objective Minimi	.se upstream stora	ige
A	pplication	Surfa	ice
Sump	Available	Y	les
Dia	meter (mm)	1	.04
Invert Minimum Outlot Ding Dig	Level (m)	0.0	50
Suggested Manhole Dia	meter (mm)	12	200
Control Po	ints Head (m)) Flow (l/s)	
Design Point (Ca	alculated) 1.10	0 5.0	
F	flush-Flo™ 0.32	3 5.0	
Mana Plan and I	Kick-Flo® 0.69	0 4.0	
Mean Flow over F	lead Kange	- 4.4	
The hydrological calculations have b	een based on the H	lead/Discharge rel	ationship for the
Hydro-Brake® Optimum as specified.	Should another typ	e of control devi	ce other than a
Hydro-Brake Optimum® be utilised the	n these storage ro	outing calculation	s will be
invalidated			
Depth (m) Flow (1/s) Depth (m) Flow	/ (l/s) Depth (m)	Flow (l/s) Depth	(m) Flow (l/s)
0 100 3 5 1 200	5 2 2 000		000 12.0
0.200 4.8 1.400	5.6 3.500	8.6 7.	500 12.4
0.300 5.0 1.600	6.0 4.000	9.2 8.	000 12.7
0.400 5.0 1.800	6.3 4.500	9.7 8.	500 13.1
0.500 4.8 2.000	6.6 5.000	10.2 9.	000 13.5
0.600 4.6 2.200	6.9 5.500	10.7 9.	500 13.8
0.800 4.3 2.400	7.2 6.000	11.1	
1.000 4.8 2.600	7.5 6.500	11.5	
<u>ଜ</u> ୀ ୨۶	32-2020 Innovvze	2	
		-	

Resolute Engineering Group Ltd	Page 1				
la Moyne Road	Port	Road Dev Kil	larney	Tank 1	
Baldoyle	100YR	P+10%			
Co. Dublin, D13 YV4X	SOAKA	WAY			Micco
Date 11/08/2021 13:52	Desig	ned by STORM	ITECH S	C740	
File	Check	ed by LP			Diamage
Innovyze	Sourc	e Control 20	20.1		
-					
Summary of Results	for 100	year Returr	n Peric	od (+10응)	
		-			
Half D	Drain Tim	e : 61 minutes	•		
Storm Ma	ax Max	Max	Max	Status	
Event Lev	vel Dept	h Infiltration	Volume		
(1	m) (m)	(l/s)	(m³)		
15 min Winter 0.0	685 0.68	5 6.6	28.8	ОК	
30 min Winter 0.9	903 0.90	3 7.1	37.9	ОК	
60 min Winter 1.0	041 1.04	1 7.4	43.7	O K	
120 min Winter 1.0	064 1.06	4 7.5	44.7	O K	
180 min Winter 1.0	024 1.02	4 7.4	43.0	O K	
240 min Winter 0.9	964 0.96	4 7.2	40.5	ΟK	
360 min Winter 0.8	831 0.83	1 6.9	34.9	O K	
480 min Winter 0.7	700 0.70	0 6.6	29.4	O K	
600 min Winter 0.5	581 0.58	1 6.3	24.4	0 K	
720 min Winter 0.4	473 0.47	3 6.1	19.9	0 K	
960 min Winter 0.2	293 0.29	3 5.6	12.3	ΟK	
1440 min Winter 0.0	067 0.06	7 5.1	2.8	ΟK	
2160 min Winter 0.0	040 0.04	0 4.0	1.7	ΟK	
2880 min Winter 0.0	033 0.03	3 3.3	1.4	ΟK	
4320 min Winter 0.0	025 0.02	5 2.5	1.0	0 K	
5760 min Winter 0.0	020 0.02	2.0	0.8	ОК	
7200 min Winter 0.0	017 0.01	1.7	0.7	ОК	
8640 min Winter 0.0	015 0.01	5 1.5	0.6	ОК	
10080 min Winter 0.0	014 0.01	4 1.4	0.6	ΟK	

Storm		Rain	Flooded	Time-Peak				
	Even	t	(mm/hr)	Volume	(mins)			
				(m³)				
15	mın	Winter	94.243	0.0	23			
30	min	Winter	65.085	0.0	34			
60	min	Winter	42.570	0.0	58			
120	min	Winter	27.128	0.0	96			
180	min	Winter	20.694	0.0	134			
240	min	Winter	17.041	0.0	172			
360	min	Winter	12.934	0.0	242			
480	min	Winter	10.625	0.0	310			
600	min	Winter	9.120	0.0	376			
720	min	Winter	8.049	0.0	440			
960	min	Winter	6.606	0.0	562			
1440	min	Winter	4.991	0.0	766			
2160	min	Winter	3.764	0.0	1096			
2880	min	Winter	3.078	0.0	1460			
4320	min	Winter	2.317	0.0	2168			
5760	min	Winter	1.895	0.0	2848			
7200	min	Winter	1.621	0.0	3552			
8640	min	Winter	1.429	0.0	4232			
10080	min	Winter	1.284	0.0	5040			
10000			1.201	0.0	0010			
	©1982-2020 Innovyze							

Resolute Engineering Group Ltd		Page 2
la Moyne Road	Port Road Dev Killarney Tank 1	
Baldoyle	100YRP+10%	
Co. Dublin, D13 YV4X	SOAKAWAY	Micro
Date 11/08/2021 13:52	Designed by STORMTECH SC740	Desinado
File	Checked by LP	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.250	Longest Storm (mins) 10080
Summer Storms	No	Climate Change % +10

<u>Time Area Diagram</u>

Total Area (ha) 0.180

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.060	4	8	0.060	8	12	0.060

Resolute Engineering Group Ltd		Page 3
1a Moyne Road	Port Road Dev Killarney Tank 1	
Baldoyle	100YRP+10%	
Co. Dublin, D13 YV4X	SOAKAWAY	Mirro
Date 11/08/2021 13:52	Designed by STORMTECH SC740	Desinado
File	Checked by LP	Diamaye
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 2.000

<u>Cellular Storage Structure</u>

Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.50760 Porosity 0.60 Infiltration Coefficient Side (m/hr) 0.50760

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	70.0	70.0	1.200	0.0	107.4
1.100	70.0	107.4			

21 H. MAPPING

Figure 21.1 Groundwater Resources (Aquifers) GSI

Figure 21.2 Groundwater Vulnerability GSI

Engineering Design Report

Figure 21.3 Bedrock Geology GSI

Figure 21.4 Water Frame Work Directive (WFD SubCatchment- Deenagh) EU Water Framework Directive (2000/60/EC) (WFD).

Figure 21.5 Subsoils- EPA Maps

22 I. FLOOD RISK ASSESSMENT

Please refer to the FRA carried out by Donal Moynihan BE. C.Eng., MIEI.

23 J. PRODUCT SPECIFICATIONS

(Page left intentionally blank)

SWALES

Example of a Swale DESCRIPTION

wales are channels lined with process trap pollutants and reduce run- vegetation thus enhance treatment. Pollutant removal is off velocity. achieved by the filtering channel vegetation, sub-soil matrix, and/or infiltration into the underlying soils. Swales are particularly suitable for controlling run-off from small residential developments, parking areas and roads.

Swale Drain in Residential Area, Scotland

PRIMARY CONSIDERA	TIONS
Construction Cost	MEDIUM
Maintenance Requirements	MEDIUM
Land Take	LOW
	LOW

DESIGN

grass, which are used to convey with relatively flat side slopes (less than run-off to infiltration and in the 3:1) to maximise contact with the

> Position along the side of the impervious area that they drain to facilitate sheet flow.

> Kerb cuts or a low earth weir may be required at the edge of the swale to admit flow.

> Point inflows should be minimised to prevent erosion.

Outflow can be :

A) Invert Level: (Rough channel); Water level is a function of normal depth or of the throttle and in-flow rate. Not advisable to meet either volume reduction or attenuation targets for design events.

B) High Level: (Mini-retention basin combined with a conveyance channel); "Deep" water allows low values of conveyance velocity to be determined, which will reduce scour. Appropriate where soil conditions are relatively permeable or under drainage is provided.

C) Infiltration: (Not a conveyance channel); All in-flows infiltrated naturally or a land drainage pipe is used below the swale to ensure winter saturated conditions do not prevent infiltration taking place. Considerably less risk of erosion problems. Pipe connections are avoided.

SOURCE / SITE CONTROL

BENEFITS	
er Quality Control	YES

Water Quantity Control	YES
Amenity Value	NO
☑Habitat Creation Value	YES
Biological Treatment	NO

Wate

The use is constrained to where saturation of the soil is unlikely.

•The width of the base should not exceed 3m to prevent the formation of small channels or gullies.

Slopes should be 1-3%, if longitudinal slope > 4%, incorporate check-dams to reduce effective slope, run-off velocities and consequent potential for erosion.

 Accuracy of grading is essential, as departure from design slopes will reduce effectiveness of treatment (Minnesota Urban Small Sites BMP Manual).

The swale should be wider than deep, minimising any safety risks.

The depth of flow should not exceed 0.1m.

Flow Velocity should be less than 0.3m/s (CIRIA, 2000).

Design to empty within 24 hours of a storm.

Install an underdrain, typically a gravel layer encasing a longitudinal perforated pipe, beneath the soil layer to assist infiltration (filter drains) in most cases.

Construct the base at least 1.5m above the maximum groundwater level and only where the groundwater classification allows.

Hydraulic Design should avoid flooding for 1:30 year storm. For 100 year events property flooding should not take place and overland flows should not pass from the site and cause flooding to other areas.

SOURCE / SITE CONTROL

DESIGN

Size pipes, as large as possible, Mowing in the first year is critical in order connecting swales under driveways and to eliminate competition from weeds. roads to provide clogging.

possible under-drains can be 2000), as grasses tend to flatten down incorporated into the design (filter drain when water is flowing over them, design) and the filtered run-off can be reducing sedimentation. returned to the sewer network or outfall Maintenance includes: to watercourses.

or less.

◆A thick vegetation cover is needed for 🔤 Sediment clean-up may be needed on proper function.

Grass species should be selected taking into account their vigorousness, the soil type, their ability to tolerate silt and the available light. Should also be tolerant to periodic inundation and exposure to flow velocities.

•Native grasses are best for enhancing private land. bio-diversity and wildlife.

During construction, it is important to stabilise the channel before the turf has INTERNATIONAL EXPERIENCE been established, either with a Scotland temporary grass cover or with the use of In Scotland, many swales have been natural or synthetic erosion control located in inappropriate places and soproducts.

Protect from construction run-off.

established.

Avoid end of pipe swales, as they are susceptible to erosion.

POLLUTANT REMOVAL

A study by the Centre for Watershed Protection Monitoring suggest relatively high removal rates for some pollutants (TSS) but addition of bacteria and fair performance for phosphorus. suggested source for the bacteria is dog faeces.

The Centre for Watershed Protection Monitoring studies carried out in Scotland (Macdonald 2002) have shown an overall improvement in the quality of run-off from swales. The results also suggested that a gravel layer below the soil, a shallow slope and a raised outlet enhances performance. Details of other studies are available from the (US) National Stormwater Best Management Practices Database. (www.bmpdatabase.org)

MAINTENANCE CONSIDERATIONS

Lawn-mowing to an ideal height of In areas where infiltration is not 100mm should be maintained (CIRIA,

Periodic litter removal.

• Swales should treat areas of 5 hectares Occasional stabilisation of eroded side slopes and base.

good occasion.

Check regularly for formation of any rills, channels or gullies.

The preservation of swales for the express purpose of serving roads will require these verges to be retained by the local authority and not located within

Pollutant	Removal (%)
TSS	81
ТР	29
Nitrate	38
Metals	14-55
Bacteria	-50

ADVANTAGES

Provides pollutant removal.

Controls peak discharges by reducing run-offvelocity.

☑Linear nature makes them work well for treating highway and residential road run-off.

✓ Little water ponding on surface except during large storms.

☑ Shallow side slopes make them easy to mow.

Operational problems or failures are easily detected on the surface.

Can be used to link up other types of SUDS creating green wildlife corridors which can also provide aesthetic value.

Can be used on most soils.

Minimum safety concerns.

Relatively inexpensive, simple to build and maintain.

Maintenance not technically complicated; mainly involves lawnmowing.

LIMITATIONS

Individual swales can only treat a small area.

Roadside swales may be subject to damage from off street parking (although bollards can be used to prevent this).

Do not appear effective in reducing levels of bacteria in run-off.

Limits the location of trees on roadside verges.

Depth requires careful design for the accommodation of services.

FROM PREVIOUS - 2 of 2

Clima-Pave[™]

The rapid development of previously green-field sites and the associated creation of impermeable areas such as roofs, car parks and footpaths will mean that at project conception stage there will be potentially large volumes of surface water to be dealt with. Traditionally this has been done by piping the surface water into storage tanks or discharging it into nearby streams or surface water drainage. This method of drainage is not currently favoured by planners and designers, as it simply moves the surface water downstream where it still has to be dealt with. This is especially important where large volumes of water need to be dealt with during heavy rainfall events. Piping large volumes of water into streams and rivers increases the risk of flooding and also allows for the potential pollution of local water courses and drinking water supplies.

Sustainable Urban Drainage Systems (SUDS) and Water Source Control

Planners are encouraging the use of Sustainable Urban Drainage Systems (SUDS) in all new developments, in particular the use of appropriate source control techniques is important as this allows for the containment of the surface water collected on the site and for this surface water to be dealt with on-site as opposed to traditionally draining it off-site. SUDS, as a sustainable development approach to Surface Water Design Techniques, has the aim of balancing the following:

1. To manage water run-off from developed areas to similar quantities prior to development (Source Control)

2. Reduce and avoid incidences of downstream flooding

3. To protect or enhance water quality of the run-off

To improve or enhance the amenity where possible

>

4

Advantages of Permeable Paving

- Permeable Paving is a 'source control' method. Water is managed and dealt with on-site without piping off to storage tanks or surface water treatment systems
- The Water Framework Directive (Directive 2000/60/EC) requires that surface water discharges are managed to ensure that risk of contamination or pollution are mitigated. Permeable paving systems filter contaminants by microbial action. There is no requirement for additional filtering/polishing with Permeable Paving in normal use
- Separate attenuation tank systems are not required
- No need for gullies or channels or conventional drainage
- Recharges ground water
- Roofs, roads and other non-permeable areas can be discharged into permeable paving (No gullies required)
- No ponding or surface water
- Collected water can potentially be re-used for non-potable purposes
- Improves water quality

Clima-Pave[™], the permeable paving solution from Kilsaran, offers an advantage over traditional SUDS techniques, such as storm water attenuation tanks. This is because the stone based sub-base, which needs to be installed for any type of surfacing material, is adapted to an open graded material in permeable paving systems. This allows the water collected from the site to be stored in the pavement and either infiltrated back into the ground or discharged at a controlled rate into the surface water drainage system.

The Clima-Pave[™] system is constructed using our specially engineered permeable paving block, which has enlarged joints on all sides, typically 4-8mm in width. When the blocks have been laid, a corresponding slot is formed between the paving blocks which are then filled with a clean 3mm aggregate. This allows water to rapidly drain from the surface down into the pavement.

Traditional block paving is laid on a sand bedding layer and a Type 1/CL. 804 sub-base. To allow for storage and infiltration of the surface water percolating through the block, permeable block paving is laid on a grit laying course instead of sand and an open-graded stone sub-base instead of Type 1/CL. 804.

Advantages of Clima-Pave[™] for your project

Clima-Pave[™] from Kilsaran offers the widest range of permeable paving products for use in commercial, retail and civic projects.

Kilsaran can also offer a full site-specific permeable paving design for your project, taking into account the site ground conditions, drainage requirements and structural and traffic loading requirements for the site. This is a chargeable service and Kilsaran will provide an indemnified design provided by our nominated Consulting Engineer who will visit the site if required to appraise the installation.

Clima-Pave[™] Permeable Paving Solutions

Clima-Pave

>

Design Guidance

Clima-Pave[™] permeable paving provides a structural pavement suitable for both pedestrian and vehicular traffic depending on design. The water management and permeable functionality of the pavement is largely dependent on the correct specification and design of the pavement to meet the unique requirements of the individual site. The correct specification, testing and installation of aggregates is of paramount importance with any permeable paving system to ensure the finished pavement meets both initial and long term design requirements.

We advise that all permeable pavements require a site-specific design which should be carried out in accordance with BS 7533-13:2009 'Pavements constructed with clay, natural stone of concrete pavers. Part 13 Guide for the design of permeable pavements constructed with concrete paving blocks and flags, natural stone slabs and setts and clay pavers'.

We can provide a design service to customers who require a site specific design to be carried out for their project. In order to carry out this, we require a completed Clima-Pave[™] Permeable Paving Design form available to download from our website, from our Sales team or can be requested by emailing technical@kilsaran.ie. This form should be returned via email with the supporting information about the site to enable a design to be carried out.

The information required includes:

- Drawings of proposed site layout in AutoCad
- Full existing and proposed site levels for the pavement
- Full site investigation report to establish ground conditions and soaked CBR values of the sub-grade at formation level
- Infiltration values from soak-pit testing to BRE 365
- Overall drainage design strategy for the site
- Planning requirements or conditions for the site relating to paving and drainage (e.g. discharge limits)
- Any other pertinent site specific information
 or client / contractor requirements

> Design Guidance Basics

The below information is provided for guidance purposes only at project conception stage to allow appraisal of a permeable pavement system. Full independent advice should be sought from both the Consulting Engineer and the Contractor prior to the commencement of works. A full site-specific design will always be required in accordance with the above guidelines and BS 7533-13:2009.

The design information below is based on BS 7533-13:2009 which should also be consulted at project appraisal stage.

Types of Permeable Pavement

There are three main types of permeable pavement commonly used on sites:

System A – Full Infiltration: All water from the pavement is infiltrated to the ground

Suitable for sites with good ground conditions, higher CBR values and soils which will readily allow water to dissipate through the ground. These favourable conditions are rarely encountered on larger sites.

System B – Partial Infiltration: Most water infiltrated to ground with excess water piped off

Suitable for sites with medium ground conditions. The soil will infiltrate some of the water in the system. When storm events occur and water builds up in the system due to the soil being at capacity for drainage, perforated pipes are laid in the bottom of the sub-base to deal with the excess, taking it to the surface water drainage system. This is the most commonly used type of permeable pavement.

System C – Fully Tanked System: No water is allowed to infiltrate to ground

This type of system is used where poor sub-grade drainage conditions exist (heavy clays), where the stability of the sub-grade would diminish if extra surface water was introduced, or where ground water levels are within 1 metre of the formation level (system could gain water). In this system the sub-base acts essentially as an attenuation tank, wrapped in an impermeable polythene membrane and all water is piped out.

Clima-Pave

Selection of Pavement Type

The type of permeable pavement system to be adapted is based primarily on site ground conditions, site suitability and the permeability values of the sub-grade encountered on site from infiltration soak-pit testing. Table 1 gives guidance on the suitability of the three types of permeable pavement system.

Table 1: Guidance on selection of a pavement system

		System A - total infiltration	System B - partial infiltration	System C - no infiltration
Permeability of subgrade defined by	10 ⁻⁶ to 10 ⁻³	1	1	1
coefficient of permeability, k (m/s)	10⁻ ⁸ to 10⁻ ⁶	x	1	1
	10 ⁻¹⁰ to 10 ⁻⁸	X	x	1
Highest recorded water table within 1000mm of formation level		x	X	1
Pollutants present in subgrade		x	X	1

Table 2: Loading Categories

1 DOMESTIC PARKING	2 CAR	3 PEDESTRIAN	4 SHOPPING	5 COMMERCIAL	6 HEAVY TRAFFIC
No Large Goods Vehicles	Emergency Large Goods Vehicles only	One Large Goods Vehicles per week	Ten Large Goods Vehicles per week	100 Large Goods Vehicles per week	1000 Large Goods Vehicles per week
Zero standard axles	100 standard axles	0.015msa	0.15msa	1.5msa	15msa
Patio	Car Parking Bays and Aisles	Town/city Pedestrian Street	Retail development delivery access route	Industrial Premises	Main road
Private Drive	Railway Station platform	Nursery Access	School/college access road	Lightly Trafficked Public Road	Distribution Centre
Decorative feature	External Car Showroom	Parking area to residential development	Office block delivery route	Light Industrial development	Bus Station (bus every 5 minutes)
Enclosed Playground	Sports Stadium Pedestrian route	Garden centre external display area	Deliveries to small residential development	Mixed retail/ industrial development	Motorway Truck Stop
Footway with zero vehicle overrun	Footway with occasional overrun	Cemetery Crematorium	Garden centre delivery route	Town Square	Bus Stop
	Private drive/ footway crossover	Hotel Parking	Fire Station Yard	Footway with regular overrrun	Roundabout
		Airport Car Park with no bus pickup	Airport Car Park with bus to terminal	Airport landside roads	Bus Lane
		Sports Centre	Sports Stadium access route/ forecourt		

msa = millions of standard 8,000 kg axles

Selection of Pavement Sub-Base Thickness

The design of the sub-base for the permeable pavement should take into account the traffic loadings likely to use the pavement. It is essential to take into account any future increase in traffic volume and any HGV traffic which may use the pavement irrespective of how frequent. The correct loading category should be then selected from Table 2 taking into account the above considerations. It should be noted that no layers of the permeable pavement are designed for site traffic to use them and when finished the permeable pavement surface should not be trafficked by site traffic vehicles which are heavier than that for which the pavement was designed. It is advisable to complete paving works after all other work in the vicinity has been completed.

Typical build up details for each traffic category are illustrated on page 20 and 21 for guidance purposes.

Sub-Base Thickness For Water Storage

The sub base depth must also take into consideration the water storage requirements for the site. The depth of sub-base may have to be adjusted to allow for increased site specific water storage. Further guidance on hydraulic factors can be found in BS 7533-13:2009 section 5.4.

Adjustment To Pavement Design For Low CBR Sub-Grade

In the case of CBR values below 5%, either ground improvement work will be required for the site, or the thickness of the coarse graded aggregate sub-base will have to be adjusted in accordance with 5.6.3 and table 9 of BS 7533-13:2009

Clima-Pave

Permeable Paving Aggregates

 All materials used as permeable paving aggregate must comply to the grading and physical requirements below, as well at the general requirements of BS EN 12620 and BS EN 13242. Sub-base laying course materials should be clean, sound, non-friable and sound crushed rock material. Rounded gravel materials are not recommended for sub-base layers. The jointing material may be either clean crushed material or clean gravel material. The materials should be tested to confirm that it meets the requirements below.

4/40mm Coarse Graded Permeable Paving Aggregate		
Sieve Size (mm)	Percentage Passing	
80	100	
63	98-100	
40	90-99	
31,5	-	
20	25-70	
10	-	
4	0-15	
2	0-5	

2/6.3mm Laying Course Paving Aggregate		
Sieve Size (mm)	Percentage Passing	
14	100	
10	98-100	
6.3	80-99	
2	0-20	
1	0-5	

The contractor shall also ensure that on-going deliveries to site are checked frequently for grading, shape and inspected to ensure cleanliness.

During installation on site, great care and attention must be paid to ensure that the aggregates are kept free of contamination and deleterious matter. Construction traffic cannot be allowed to traverse the layers of permeable paving aggregates during installation.

4/20mm Coarse Graded Permeable Paving Aggregate		
Sieve Size (mm)	Percentage Passing	
40	100	
31,5	98-100	
20	90-99	
10	25-70	
4	0-15	
2	0-5	

3mm Jointing Grit		
Sieve Size (mm)	Percentage Passing	
40	100	
8	100	
6.3	95-100	
4	85-99	
2	15-35	
1	0-10	
0.063	0.0-1.5	

Property	Category to BS EN 13242 or BS EN 12620
Grading	4/20 (preferred) or 4/40 as per table above
Fines Content	F4
Shape	F I 20
Resistance to Fragmentation	LA30
Water Absorption to BS EN 1097-6:2000	WA2
For water absorption > 2% Magnesium Sulfate Soundness	MS18
Resistance to Wear	MDE20
Acid Soluble Sulfate Content	AS0.2
Total Sulfur	≤1% by mass
Recycled Aggregates	Seek guidance from Kilsaran Technical Department

Clima-Pave[™]

Typical Design Diagrams

Below are typical build-up details for permeable pavement systems based on BS 7533-13:2009. These diagrams are based on ideal site conditions for drainage and CBR values of 5% or greater. The diagrams are for project appraisal purposes only and in all cases a site specific design in accordance with BS 7533-13:2009 will be required.

System A & B (Infiltrating & Partial Infiltration Systems)

Alternative build up / materials may be used depending on project specific details.

For load categories 3-6 the hydraulically-bound coarse graded aggregate (porous no fines concrete) layer may be replaced with 80mm depth of DBM Macadam to act as a stiffening layer. The macadam layer should be punctured at 750mm centres on grid. Further details on the DBM macadam layer are given on page 19.

Where the depth of aggregate sub-base is in excess of 350mm for the given loading category, it may be possible to reduce the depth of aggregate required and provide a more cost effective design with the use of an appropriate and approved geo-grid. This can be appraised at design stage.

20

PLANNING GUIDE

System Solutions for Extensive Green Roofs

Life on Roofs

Why Have a Green Roof?

Stormwater

Management

Urban, construction and ecological advantages:

Extended Roof Life

New Habitat

Protects the roof membrane from UV exposure, heat cold and hail and mechanical damage.

Encourages wildlife to remain within build-up areas.

Features

Unlike intensive green roofs, extensive green roofs require little maintenance.

The features at a glance:

Minimum maintenance:

- Inspection and maintenance once or twice a year
- Water and nutrient supply mostly by natural means
- Plant communities close to nature:
 - Undemandina
 - Extensive
 - Self-regenerating

• Low loads and build-up heights:

- Mainly mineral growing medias with depths of up to about 5 in.
- Loads about 20-40 lbs/sq.ft.

Low-cost:

- For installation and maintenance

Reduction of Dust and Smog Levels

Reduces immediate water run-off. The sewer pipes can be reduced in capacity.

Principles

ZinCo extensive green roofs are installed in accordance with current standards.

Our six principles at a glance:

- The System Build-up is tailored to suit each roof.
- The System Build-up ensures permanent drainage, even under load.
- The System Build-up provides for a good water/air balance.
- The System Build-up is adapted to suit the required type of vegetation.
- The System Build-up keeps maintenance and upkeep to a minimum.
- The System Build-up provides for a long green roof life.

Enhances the microclimate by cooling, filtering out dust and smog particles.

Improve Building Operations

Thermal protection in both summer and winter and reduction of heating and cooling costs.

Noise Reduction

 Improves sound insulation.

All vegetation specific information is based on moderate continental climate. Please contact us for any other climatic condition.

ZinCo Extensive Green Roof Systems

System Build-up "Sedum Carpet"

System Build-up "Sedum Carpet" on Inverted Roofs	6
System Build-up "Sedum Carpet" for Large Industrial Roofs	7
System Build-up "Ornamental Sedum"	8
System Build-up "Solar Green"	10

Details and Accessories

11

4

Please see our Planning Guides :

- "System Solutions for Sloped Green Roofs"
- "System Solutions for Intensive Green Roofs" for more information.

System Build-up "Sedum Carpet"

"Sedum Carpet" is a shallow, groundcovering extensive green roof type. In moderate climates, it requires approx. 2.5 in. of "Zincoblend E" Growing Media. The System Build-up is adapted to the particular roof condition. "Sedum Carpet" is used, when the load bearing capacity of the roof and the expenses for maintenance, are restrictive. Proven Sedum species, in combination with the appropriate System Build-up, guarantee a long-lasting low maintenance green roof. The plant community "Sedum Carpet" contains various low-growing Sedum species.

The main blooming time is in early summer, with yellow or red and white flowers dominating at different times. Throughout the rest of the year, "Sedum Carpet" is represented in various shades of green. Red shades, particulary in autumn, are a pleasant change in the visual appearance. "Sedum Carpet" is installed either by Sedum cuttings or plug plants or precultivated vegetation mats.

Plant Suggestions "Sedum Carpet"

Minimum of four different Sedum species

Botanical Name	Common Name	Height (in.)	Blossom Color	Time of Bloom
Sedum album varieties	White Stonecrop Varieties	2-4	white	early mid summer
Sedum cauticolum	Nettle-Leaved Goosefoot	4-6	pink	late summer - early fall
Sedum floriferum 'Weihenstep. Gold'	Gold Sedum	2-4	yellow	early mid summer
Sedum hybridum 'Immergrünchen'	Hybrid Stonecrop	4-6	yellow	mid summer
Sedum reflexum	Crooked Yellow Stonecrop	8-10	yellow	early mid summer
Sedum sexangulare	Tasteless Yellow Stonecrop	2-4	yellow	early mid summer
Sedum spurium in varieties.	Dragon`s Blood	4-6	red, white, pink	mid summer

Roof construction with root-resistant waterproofing

Slope:	1/48 – 2/12
Height	\approx 3 $\frac{3}{4}$ in.
Weight:	pprox 20 lbs/sq. ft.
Water retention capacity:	pprox 0.8 gal/sq. ft.

Plant Community "Sedum Carpet"

Growing Media "Zincoblend E", Depth: ≈ 2.5 in., for vegetation mats ≈ 1.5 in. Filter Sheet SF

Drainage Element Floradrain® FD 25-E Protection Mat SSM 45 Root Barrier WSF 40 (optional)
System Build-up "Sedum Carpet" on Inverted Roofs

Slope:	1/48–2/12
Height	\approx 3 $\frac{3}{4}$ in.
Weight:	pprox 19 lbs/sq. ft.
Water retention capacity:	pprox 0.7 gal/sq. ft.

With inverted roofs, layers that prevent the diffusion of water vapor must not be installed above the XPS thermal insulation boards. Therefore, the water retaining protection mat must be replaced by the diffusion permitting Separation Membrane TGV 21. If root barriers are necessary they have to be placed below the insulation boards directly onto the waterproofing.

Inverted Roof (Slope 1/48–2/12)

Plant Community "Sedum Carpet"

growing media "Zincoblend E", Depth: ≈ 2.5 in. (≈ 60 mm), for vegetation mats ≈ 1.5 in. (≈ 45 mm) Filter Sheet SF Drainage Element Floradrain® FD 25-E Separation Membrane TGV 21

(XPS thermal insulation)

Root Barrier WSF 40 (optional)

System Build-up "Sedum Carpet" for Large Industrial Roofs

The bigger the roof area, the higher the costs. You can avoid this by omitting certain layers.

ZinCo has combined a number of functional layers in one product. Fixodrain® XD 20 can be installed without an additional protection layer, due to its extremely large contact surface and continuous connection over a large area. The filter sheet is laminated to the drainage mat, the roll-out takes place quick and easy. The elements are interlocking with an overlapping filter sheet.

Roof construction with root-resistant waterproofing

Slope:	1/48–2/12
Height	\approx 3 $\frac{3}{4}$ in.
Weight:	pprox 19 lbs/sq. ft.
Water retention capacity:	pprox 0.7 gal/sq. ft.

Plant Community "Sedum Carpet"

Growing Media "Zincoblend E", Depth: ≈ 2.5 in. , for vegetation mats ≈ 1.5 in.

Drainage Mat Fixodrain® XD 20 Root Barrier WSF 40 (optional) covered with Filter Sheet PV

System Build-up "Ornamental Sedum"

"Ornamental Sedum" allows for an extensive green roof with sophisticated design and individual character. The growing media is applied with a minimum depth of

2.75 in. "Ornamental Sedum" vegetation consists of a wide variety of species which results in a long blooming period and allows for different accents throughout the vegetation period.

Sedum species and other perennials are primarily used as a ground cover. Drought resistant perennials add flowering accents and height to the design.

The color spectrum is significantly more diverse in comparison to "Sedum Carpet". The Build-up is realized by manually planting plug plants. Thus the desired result can be designed.

Plant Suggestions "Ornamental Sedum"

Botanical Name	Common Name	Height (in.)	Blossom Color	Time of Bloom
Accent plants (groups of 3,	,5, or 7)			
Allium schoenoprasum	Wild Chives	10	pink	late spring
Armeria maritima 'Alba'	White Sea Thrift	6	white	mid spring
Dianthus deltoides 'Brillant'	Maiden Pink	4-6	red	early summer
Saponaria ocymoides	Rock Soapwort	12	pink	early-late summer
Sedum ellacombianum	Orange Stonecrop	4-6	yellow	mid-summer
Sempervivum tectorum 'Emerald Empress'	Common Houseleek	2-4	pink	early-mid summer
Talinum calycinum	Fameflower	10-12	pink	late spring - late summer
Ground covers (Minimum of four different Sedum species)				
Antennaria dioica	Stoloniferous	4	nink	early-mid summer

	Pussytoes			,
Delosperma nubigenum "Basutoland"	Ice Plant	2-3	yellow	late spring
Sedum floriferum Weihenstephaner Gold'	Gold Sedum	2-4	white	early-mid summer
Sedum hybridum Immergruenchen'	Hybrid Stonecrop	4-6	yellow	mid summer
Sedum middendorfianum diffusum	Stonecrop	5	yellow	mid summer
Thymus serpyllum Coccineum'	Red Thyme	12	red	early summer
Thymus serpyllum Pink Chintz'	Creeping Thyme	12	pink	spring

Roof construction with root-resistant waterproofing

Slope:	0/12-2/12
Height	\approx 4 $\frac{1}{2}$ in.
Weight:	pprox 23 lbs/sq. ft.
Water retention capacity:	pprox 1.0 gal/sq. ft.

Plant Community "Ornamental Sedum"

Growing Media "Zincoblend E", Depth: ≈ 2.75 in.

Filter Sheet SF Floradrain® FD 40-E

Protection Mat SSM 45 Root Barrier WSF 40 (optional)

System Build-up "Solar Green"

Solar energy and green roofs can now be combined. With our System Build-up "Solar Green" (Fixodrain® XD 20, ZinCo Solar Base SB 200 and Base Frame SGR) solar panels can be combined with a green roof.

Solar panels are more energy efficent with the cooling effects of the Sedum. And, there is no need for roof penetration, because the weight of the green roof build-up ballasts the entire system.

Solar panel

Solar Base Frame SGR

Plant Community "Sedum Carpet" Growing Media "Zincoblend E" ZinCo Solar Base® SB 200 with infill Fixodrain® XD 20 Root Barrier WSF 40 (optional)

* The required growing media quantity depends on the project. Thus the total weight can change.

Roof construction with root-resistant waterproofing

Water storage capacity: from pprox 0.6 gal/sq. ft.*

from \approx 5 in.

from \approx 25 lbs/sq. ft.*

Build-up height:

Weight, saturated:

Accessories and Details

Perimeters

In line with local roofing codes a height of 4 inches above the roof surface is required. The protection mat and root barrier are required to be tucked up under the parapet cap. The protection mat and

Standard perimeter solution

Roof Drains and Inspection Chambers

Usually, the drainage of low sloped roofs is achieved through roof drains. The quantity as well as the size of the roof drains should be designed according to laocal building codes.

Inspection chambers make sure the roof drains remain accessible and therefore can be cleaned easily.

Drainage via an External Eaves Gutter

If the drainage of a green roof is to be ensured by an external gutter, the green roof build-up can be bordered by an eaves profile, which is attached to the waterproofing. Eaves profiles border the build-up but allow for unhindered water runoff due to their drainage slots. root barrier, are brought upwards and secured.

If in projects with high wind loads the perimeter and corner areas of the roof are to be part of the green roof,

Solution for low perimeters

Wall Connection

Perimeter solution for high wind loads (loose waterproofing)

The connection to walls needs to be waterproof. Therefore the protection mat, the waterproofing and the root barrier are taken up at least 6 in above the finished surface of the green roof build-up and fixed with a protection profile. In front of facades the installation of additional drainage channels is recommanded

in order to lead rainwater directly into the drainage layer. If only little water is expected, a simple gravel strip is sufficient.

Ecological Green Roof Systems

This Planning Guide aims to give you a general overview of the technology involved in the various extensive green roof options.

Our technical experts will be pleased to advise you on specific solutions for your own individual building projects: from the planning phase right through to creating your specification texts.

Challenge us!

ZinCo USA, Inc. · 401 VFW Drive · Rockland, MA 02370 Phone 866 766 3155 · Fax 7866 766 3955 info@zinco-usa.com · www.zinco-usa.com

Beton Constructio	n Serv	ices Ltd	
Roof rainfall outflow calculation			
Site location: Port Rd, Killarney Block	J		
Mat Eiroann E 95729 N 91277			
Return Period Rainfall Denths		PIMP	
M5-60	16.70	Green roof	
M5-2D	76.80	6cm S	45.0%
M100-60	31.50	30cm S	0.0%
		50cm S	0.0%
r	0.24	Paved	0.0%
		Ballast	9.0%
Roof elements			
Green Roof		Average pimp Factor for roof	54.0%
6cm S (m²)	850.00		
30cm S (m²)	0.00	1. Sub Estimated Outflow	m³
50cm S (m²)	0.00	M5-60 1 in 5yr 1hr	8.53
Paved (m ²)	0.00	M5-2D 1 in 5yr 48hr	39.21
Ballast (m²)	95.00	M100-60 1 in 100yr 1hr	16.08
Sub Total (m)	945.00	Drainage layer interception I(m ²)	3.00
PIMP Factors			
Green roof			
6cm S	0.5	Deduct for drainage layer interception:	
30cm S	0.4	2. Sub Estimated Outflow	m³
50cm S	0.4	M5-60 1 in 5yr 1hr	5.69
Paved	0.9	M5-2D 1 in 5yr 48hr	36.37
Ballast	0.9	M100-60 1 in 100yr 1hr	13.25
Add for climate change factor	10%		
Total Estimated Outflow	m³		
M5-60 1 in 5yr 1hr	6.26		
M5-2D 1 in 5yr 48hr	40.01		
M100-60 1 in 100yr 1hr	14.57		

OFFICES:

CORK

Unit 1B, The Atrium, Blackpool, Cork.

KERRY

HQ Tralee, Abbey Street, Tralee, Kerry Tel: +353 (0) 214840214

E: info@mhl.ie

MHL & Associates Consulting Engineers Registration Number 311279

> Visit us at: www.mhl.ie